
CS115X Fall 2015 – Code Style Guide | Page 1 of 13

CS 115X Introduction to Computer Science 1

Code Style Guide
Last revised: September 21, 2015

Introduction
The code you submit for labs and assignments is made more readable by paying attention to
style. This includes use of whitespace, placement of comments, and choice of variable and
function names. None of these affect the way the program executes, but they do affect the
readability of your code.

Just like English, computer code is a language. The main goal of all languages is to facilitate
communication. When writing code, you are not only communicating with a computer, but
also with yourself (often your “future” self) and other people reading your code. In industry,
those other people are typically other programmers. In this course, those other people will
be your instructor and your TAs who are leading labs and marking your work.

This is why it is important to consider the needs of human readers and present code in a way
that most clearly communicates what the program does. This is just like how we use
indentations, commas, and periods to signify the start of a new paragraph, a pause in a
sentence, or the end of a sentence.

Here is an example of the last two paragraphs without any common English language style
rules (capital letters, commas, periods, breaks for paragraphs, etc.). Try reading it:

just like english computer code is a language the main goal of all languages is
to facilitate communication when writing code, you are not only
communicating with a computer but also with yourself often your future self
and other people reading your code In industry those other people are
typically other programmers in this course those other people will be your
instructor and your tas who are leading labs and marking your work this is
why it is important to consider the needs of human readers and present
code in a way that most clearly communicates what the program does this is
just like how we use indentations commas and periods to signify the start of
a new paragraph a pause in a sentence or the end of a sentence

This is what it is like to read code that does not consider proper style.

This guide will outline the proper use of whitespace, comments, variable naming, code
structure, and clarity and efficiency.

CS115X Fall 2015 – Code Style Guide | Page 2 of 13

Whitespace
When we talk about whitespace in computer programming, we are talking about the use of
blank lines, indentations, and newlines to make our code more readable. To the computer,
most whitespace is irrelevant, but it is very important for humans reading your code. This
section presents guidelines for making good use of white space.

Let’s start with an example to illustrate poor use of whitespace and good use of whitespace.

Example of Poor Whitespace Style:

float space=5;
int number_of_circles=10;
float x=0;
void setup(){size (700,100) ;
colorMode (HSB,360,100,100,100) ;
}
void draw (){background(360);
for(int i=0;i<number_of_circles;i ++) {
float hue=map(i,0,number_of_circles-­‐1,150,250) ;
fill(hue, 80, 80);
float x2=x-­‐i*(30+space);
float y=height/2;
ellipse(x2,y,30,30) ; }
x+=2;
}

The Processing code above does not make use of blank lines, has no indentation, and is
inconsistent with inline whitespace.

Now, here is the same block of code using good whitespace style.

 Example of Good Whitespace Style:
float space = 5;
int number_of_circles = 10;
float x = 0;

void setup() {
 size(700, 100);
 colorMode(HSB, 360, 100, 100, 100) ;
}

void draw() {
 background(360);
 for (int i = 0; i < number_of_circles; i++) {
 float hue = map(i, 0, number_of_circles -­‐ 1, 150, 250);
 fill(hue, 80, 80);
 float x2 = x -­‐ i * (30 + space);
 float y = height / 2;
 ellipse(x2, y, 30, 30);
 }
 x += 2;
}

CS115X Fall 2015 – Code Style Guide | Page 3 of 13

Basic In-line Spacing

One space after commas in function arguments:

✔ point(x, y);

✗ point(x,y);

No space between function name and opening bracket:

✔ ellipse(0, 10, 20, 30);

✗ ellipse (0, 10, 20, 30);

No space before the semicolon at the end of a statement:

✔ ellipse(0, 10, 20, 30);

✗ ellipse(0, 10, 20, 30) ;

No space after the opening bracket or before the closing bracket:

✔ ellipse(0, 10, 20, 30);

✗ ellipse(0, 10, 20, 30);

Basic Use of Blank Lines
When discussing basic use of blank lines, consider a program to draw this stick figure:

CS115X Fall 2015 – Code Style Guide | Page 4 of 13

 Example of poor code style to draw this stick figure:

size(100, 250);
ellipse(50, 50, 40, 40);
ellipse(45, 45, 5, 5);
ellipse(55, 45, 5, 5);
arc(50, 50, 20, 20, QUARTER_PI, HALF_PI+QUARTER_PI);
line(50, 70, 50, 150);
line(50, 70, 15, 100);
line(50, 70, 85, 100);
line(50, 150, 15, 200);
line(50, 150, 85, 200);

Notice that it is hard to understand what this code doe since there are no natural breaks.
Let’s now use blank lines and comments to make this easier to read.

Blank Lines

Blank lines inserted between groups of related statement provides visual structure to your
code by dividing it into “chunk.” Code is typically related by purpose in your algorithm

Example using blank lines to “chunk” the code into sections:

size(100, 250);

ellipse(50, 50, 40, 40);
ellipse(45, 45, 5, 5);
ellipse(55, 45, 5, 5);
arc(50, 50, 20, 20, QUARTER_PI, HALF_PI+QUARTER_PI);

line(50, 70, 50, 150);
line(50, 70, 15, 100);
line(50, 70, 85, 100);
line(50, 150, 15, 200);
line(50, 150, 85, 200);

This is a little better than the first version because now the reader understands that the
chunks of code go together, but it still is not clear what all of these chunks of code do. The
first chunk has only one statement which is creating the canvas, but all we can tell from the
second third chunk at a glance is that they are probably drawing a part of the figure, but it
isn’t clear what part. That’s where comments come in.

Comments
Comments provide information to the reader that cannot be understood easily by only
reading the code. They may describe what a block of code does or explain why the code is
needed. Comments may also be useful during the coding process.

CS115X Fall 2015 – Code Style Guide | Page 5 of 13

Here is the previous code with comments to explain that the first chunk is setting up the
canvas, the second chunk draws the head, and the third chunk draws the body.

Example using comments to explain chunks of code:

// setup the canvas
size(100, 250);

// Stick figure head
ellipse(50, 50, 40, 40);
ellipse(45, 45, 5, 5);
ellipse(55, 45, 5, 5);
arc(50, 50, 20, 20, QUARTER_PI, HALF_PI+QUARTER_PI);

// Stick figure body
line(50, 70, 50, 150);
line(50, 70, 15, 100);
line(50, 70, 85, 100);
line(50, 150, 15, 200);
line(50, 150, 85, 200);

This code is now much easier for another person to understand what this code is doing.

Using Comments
Comments most often appear on the lines before the code chunk or line of code that is being
commented. There is no blank line between a comment line and the next line of code being
described.

Whole line comments are on the line before the code they’re commenting:

 // setup the canvas
size(100, 250);

 // setup the canvas

size(100, 250);

 size(100, 250);
// setup the canvas

Comments are occasionally placed on the same line as the code, always to the right of the
code. Comments placed on the same line as code should always be a very short line of code
and the comment itself should also be very short – at most 3 words. Comments for long
lines of code or comments that require more detail should go on the line before the code
being commented.

CS115X Fall 2015 – Code Style Guide | Page 6 of 13

Same line comments are for short lines of code and short comments:

 ellipse(45, 45, 5, 5); // left eye

 ellipse(45, 45, 5, 5); // draw the left eye of the stick figure

 arc(50, 50, 20, 20, QUARTER_PI, HALF_PI+QUARTER_PI); / draw smiling mouth

Comments can have different purposes.

Describe what the code does

// check if car crashes into the curb
if (carX > curbRight || carX < curbLeft) {
 ...

Describe why the code is needed

// sometimes number is 0, which would be bad
if (number != 0) {
 ...

Describe things that may not be clear

fill(#37BEC9); // chartreuse

Provide a reference

// Based on gravity formulas from:
// http://www.physics.com
float calculateGravity(float height, float mass) {
 ...

Comments are sometimes used to make notes to yourself.

Mark code with TODO when it needs to be completed

// TODO: check if car is outside canvas

Mark code that is a HACK and should be cleaned up

// HACK: need to parameterize this drawing

Comments to Avoid

Avoid restating what is already clear and obvious from the code

 ✗ // add b to a
a = a + b;

 ✗ // check if the left mouse button is pressed
if (mousePressed && mouseButton == LEFT) {
 ...

CS115X Fall 2015 – Code Style Guide | Page 7 of 13

✗ // set the car width to 100

float carWidth = 100;

Whitespace for Functions
When defining a function like setup, at least one blank line should come before the function.
If you have a comment before the function then the blank line should come before the
comment.

 Example of good style with a blank line before function definition:

void setup() {
 size(300, 300);
}

void draw() {
 ellipse(mouseX, mouseY, 10, 10);
}

 Example of poor style with no blank line before function definition:

void setup() {
 size(300, 300);
}
void draw() {
 ellipse(mouseX, mouseY, 10, 10);
}

Code Block Indentation
Anything between { and } is called a code block. All code and comments within a code block
should be indented by the same amount using a single TAB or the same number of SPACES.
Doing so allows the reader to easily see the code that belongs to each command that created
the block. Some commands that create code blocks are while loops, for loops, built-in
functions, and user defined functions.

Code blocks have the following format:

• The first line is the command. This line will always end with an open curly bracket ‘{‘.
• The next lines are associated with the command are indented. The indent shows this

association.
• The last line of a code block is a closing curly bracket ‘}’. It is not indented.

CS115X Fall 2015 – Code Style Guide | Page 8 of 13

 Good code block style with correct indenting:

void setup() {
 size(150, 150);
 fill(200);
}

 Poor code block style (no indenting):

void setup() {
size(150, 150);
fill(200);
}

 Poor code block style (incorrect indenting):

void setup()
{
 size(150, 150);
 fill(200);
}

 Poor code block style (incorrect indenting):

void setup() {
 size(150, 150);
 fill(200);
 }

Advanced Indentation for Code Blocks within Code Blocks
It is possible to have a code block “nested” inside another code block. When this occurs the
same rules described above are applied to both the outer and inner code blocks.

Good nested code block style with correct indenting:

void draw() {
 background(200);
 strokeWeight(5);

 while (i < 10) {
 point(i * 10, 50);
 i++;
 }
}

In the example above, all code in the draw function is indented and within this code block
there is a while loop. All the code in the while loop code block is indented again. Also, notice
that the closing braces are indented according to what command it is associated with.

Advanced Indentation for Conditionals (if, else if, else)
The commands if, else if, and else follow the same indentation principles mentioned
above. The only difference is related to the closing bracket and the next command. An if

CS115X Fall 2015 – Code Style Guide | Page 9 of 13

statement is often followed by an else if statement or an else statement. Since these
commands are logically linked together, the closing curly bracket and the next command
occur on the same line.

 Good indentation style for conditional statements:

if (key == '0') {
 white = false;
} else if (key == '1') {
 white = true;
} else {
 white = !white;
}

 Poor indentation style for conditional statements:

if (key == '0') {
 white = false;
}
else if (key == '1') {
 white = true;
}
else {
 white = !white;
}

It is possible to have a if statement nested within another if statement. In these situations
the indenting is the same as described above.

 Good indentation style for conditional statements:

if (i < 1) {
 if (i == 0) {
 println(“zero”);
 } else {
 println(“negative”);
 }
} else {
 println(“positive”);
}

Automatic Indentation using Command-T
A good strategy to instantly improve the indentation in your code is to use the Auto Format
option in the Edit menu of the Processing IDE. You can also do this by pressing Command-T
on your keyboard (for windows use Control-T).

Note that this generally only fixes indentation, and it will sometimes not fix everything.

CS115X Fall 2015 – Code Style Guide | Page 10 of 13

Advanced In-line Spacing
Operators are the the things that do the action in equations or relational statements (e.g. the
plus sign ‘+’ is an operator).

Binary Operators
Most operators are binary, meaning they operate on two values. Those values may be
numbers, variables, or functions that return a value. Always add spaces around binary
operators to make it easier to read the operators and values.

 The assignment operator: =

✔ float circle_size = 10;

✗ float circle_size=10;

 Arithmetic operators: + -­‐ * / += -­‐= *= /= %

✔ float x2 = x -­‐ i * (size + space);

✗ float x2=x-­‐i*(size+space);

 Relational operators: == != < <= > >=

✔ if (x > width) {

✗ if (x>width) {

 Logical operators: && ||

✔ if (x > width && keyPressed) {

✗ if (x>width&&keyPressed) {

Unary Operators
Some operators are unary, meaning they operate on one value only. Do not add spaces
between the unary operator and the value it operators on.

CS115X Fall 2015 – Code Style Guide | Page 11 of 13

 Increment operator ++ or decrement operator -­‐-­‐

✔�� i++;

✗ i ++;

 Logical not operator !

✔ if (!mousePressed) {

✗ if (! mousePressed) {

Functions
Where you are calling a function or defining a function, there is never a space between the
function name and the opening bracket.

 Calling a function:

✔ ellipse(0, 10, 20, 30);

✗ ellipse (0, 10, 20, 30);

 Defining a function:

✔ void circle(float x, float y, float size) {
 ...

✗ void circle (float x, float y, float size) {
 ...

Keywords
Keywords are commands that are part of the core language. Some Processing keywords have
arguments and associated code blocks, a little like functions. However, standard coding style
treats keywords different than functions: you leave a single space between the keyword and
the opening bracket where the keyword “arguments” are. The only keywords you will see in
this course that work like this are: if, while, for

 Keyword inline spacing examples:

✔ if (x != true) {
 ����...

✗ if(x != true) {
 ����...

✔ while (i < 10) {
 ����...

✗ while(i < 10) {
 ����...

CS115X Fall 2015 – Code Style Guide | Page 12 of 13

The three arguments in a for loop are separated by semicolons. These are treated exactly like
commas in a function call.

 Semi-colons in for loops:

✗ for (int i = 0;i < 10;i++) {
 ����...

✔ for (int i = 0; i < 10; i++) {
 ����...

Breaking up Long Lines
Insert a line break for long lines of code. This lets you control how it wraps and ensure you
can see the line in the code editor.

Example 1

 ✗ Poor style due to very long line:

if (mousePressed == true && mouseButton == RIGHT) || (keyPressed == true
&& key == 'x')) {
 println("right mouse button or x key!");
}

 ✔ Good style after wrapping the long line:

if (mousePressed == true && mouseButton == RIGHT) ||
 (keyPressed == true && key == 'x')) {
 println("right mouse button or x key!");
}

Example 2

 Poor style due to very long line:

rect(shipX -­‐ shipWidth/2 + offsetX, shipY -­‐ shipHeight/2 + offsetY,
shipWidth, shipHeight);

 ✔ Good style after wrapping the long line:

rect(shipX -­‐ shipWidth/2 + offsetX,
 shipY -­‐ shipHeight/2 + offsetY,
 shipWidth, shipHeight);

CS115X Fall 2015 – Code Style Guide | Page 13 of 13

Variables

Naming Variables
The way in which you name these variables also helps make your code more descriptive.

Here are some guidelines for naming variables:

§ Begin all variables with a lowercase letter
§ One-character names should be avoided, except for temporary and looping variables.
§ Adopt a consistent convention when your variable has two words:

§ “lowerCamelCase”, e.g. shipWidth, lastShipSpeed
§ “underscore_separated”: e.g. ship_width, last_ship_speed

When to Use Variables
Variables are used for values that are used over and over again. They are also used for
values that are changed during the execution of a program.

Numeric values that appear in the code are often referred to as “magic numbers”. A “magic
number” is a number that over time may need to be changed or is repeated multiple times
representing the same value. If we assign the “magic number” to a variable, then we can
update its value in one place if we need to, rather than multiple places. Magic numbers are a
common source of errors in a program.

Consider an example with magic numbers for the size of the circles and their spacing.

 Example with magic numbers:

void draw() {
 for (int i = 0; i < 10; i++) {
 ellipse(i * (10 + 50), 80, 50, 50);
 }
}

 Example with variables substituted for magic numbers:

// so we can easily control the size and spacing
float circleSize = 50;
float circleSpacing = 10;

void draw() {
 for (int i = 0; i < 10; i++) {

 ellipse(i * (circleSpacing + circleSize),
 80, circleSize, circleSize);

 }
}

Note that in the example above, we didn’t change every numeric value to a variable. If a value
is only used once and it’s unlikely to change, then it doesn't need to be a variable.

